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Аннотация. В теории задач математической физики, связанных с сингулярно 

возмущенными уравнениями, накоплены значительные фундаментальные результаты, 

посвящённые прежде всего прямым задачам и их аналитическому исследованию. Однако 

указанное в полной мере не относится к сингулярно-возмущённым обратным задачам 

переноса в неограниченной области, что и определяет актуальность исследования данной 

работы. Дополнительные трудности возникают при исследовании многоскоростных обратных 

задач переноса, поскольку реализация большинства известных методов их решения связана с 

необходимостью построения специальных координатных систем, зависящих от особенностей 

конкретных задач. Эти системы могут быть как прямоугольными декартовыми, в которых 

исходно формулируется задача, так и криволинейными, в которые осуществляется 

соответствующее преобразование. При этом требуются дополнительные условия на новые 

функции, при которых новые переменные связаны между собой определенными 

соотношениями, в зависимости от заданных областей. В данной статье исследуется n-

скоростная сингулярно-возмущённая обратная задача переноса типа Каца в неограниченной 

области. Предлагаемый метод решения позволяет оставаться в декартовой системе координат 

независимо от числа переменных фазового пространства и тем самым существенно упрощает 

аналитическое исследование и расширяет возможности практического применения 

полученных результатов. Для сингулярно-возмущённой обратной задачи переноса типа Каца 

в неограниченной области результаты получены в весовом пространстве. Построение решения 

основано на модифицированном методе асимптотического характера. В рамках данного 

подхода доказаны оценки близости решений сингулярно-возмущённой обратной задачи и 

вырожденной обратной задачи в выбранном весовом пространстве. 

 

Abstract. In the theory of problems of mathematical physics associated with singularly 

perturbed equations, a substantial body of fundamental results has been accumulated, primarily 

devoted to direct problems and their analytical investigation. However, this cannot be fully attributed 
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to singularly perturbed inverse transport problems in an unbounded domain, which determines the 

relevance of the research presented in this work. Additional difficulties arise in the study of multi-

velocity inverse transport problems, since the implementation of most known solution methods is 

associated with the need to construct special coordinate systems that depend on the specific features 

of the problem under consideration. These systems may be either rectangular Cartesian coordinates, 

in which the problem is originally formulated, or curvilinear coordinates to which an appropriate 

transformation is performed. In this case, additional conditions are required for new functions, in 

which new variables are related to each other by certain relationships, depending on the given areas. 

In this paper, an n-velocity singularly perturbed inverse Kac-type transport problem in an unbounded 

domain is investigated. The proposed solution method makes it possible to remain within the 

Cartesian coordinate system regardless of the number of phase space variables, thereby significantly 

simplifying the analytical study and expanding the possibilities for practical application of the 

obtained results. For a singularly perturbed inverse transport problem of the Katz type in an 

unbounded domain, results are obtained in weighted space. The solution is constructed using a 

modified asymptotic method. Within the framework of this approach, estimates of the proximity of 

solutions of a singularly perturbed inverse problem and a degenerate inverse problem in a selected 

weight space are proven. 

 

Ключевые слова: уравнение переноса, многоскоростная обратная задача, единственность 

решения. 

 

Keywords: transport equation, multi-velocity inverse problem, uniqueness of solution. 

 

В теории переноса в области переменных частиц многоскоростные задачи переноса 

характеризуются зависимостью от числа простых координат без учёта временной переменной 

и др. [1, 4]. 

Такие задачи возникают при моделировании сложных физических процессов, в которых 

движение частиц осуществляется с несколькими характерными скоростями, что существенно 

усложняет математическое описание и анализ соответствующих моделей. Особенно заметно 

это проявляется при рассмотрении задач в неограниченных областях, где стандартные методы 

исследования оказываются недостаточно эффективными.  

В настоящей работе рассматривается n-скоростная сингулярно-возмущенная обратная 

задача переноса в неограниченной области. При этом близость решений сингулярно-

возмущенной обратной задачи (СВОЗ) и вырожденных обратных задач (ВОЗ) оценивается в 

весовом пространстве типа Гильберта 𝑊ℎ
2(𝛺0 = (0, 𝑇0) × 𝑅

𝑛), когда априорная информация 

задается из𝐿2(𝑅𝑛). 

Следует отметить, что, несмотря на наличие значительного числа фундаментальных 

работ по теории прямых задач математической физики, связанных с сингулярно-

возмущёнными уравнениями (СВУ) и разработанные в них методы не могут быть 

непосредственно применены к исследованию указанных классов СВОЗ [2, 3, 5]. 

Поэтому в данной работе для решения n-скоростной СВОЗ переноса типа Каца [6] в 

неограниченной области предлагается алгоритм, позволяющий оставаться в декартовой 

системе координат независимо от числа координат. При этом предложенный подход является 

модификацией разработанного алгоритма асимптотического характера (АХ) [7]. 

Рассмотрим п-скоростную ОЗ переноса вида: 
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𝜀𝛽 [
𝜕

𝜕𝑡
(𝐸(𝑎1,...,𝑎𝑛)

1,1,...,1 𝑈𝜀) + 𝑈𝜀
2(𝑡, 𝑥1, . . . , 𝑥𝑛)] + 𝜆𝐸(𝑎1,...,𝑎𝑛)

1,1,..,1 𝑈𝜀 + ℎ0(𝑥1, . . . , 𝑥𝑛)𝑈𝜀

= 𝑍𝜀(𝑥1, . . . , 𝑥𝑛)𝑓(𝑡), 

(1)
 

 

{
 
 

 
 
(𝑈𝜀𝑡

(𝑖)
(𝑡, 𝑥1, . . . , 𝑥𝑛)|𝑡=0 = 𝑉𝑡

(𝑖)
(0, 𝑥1, . . . , 𝑥𝑛) + (∑

𝑛

𝑗=1

2𝑎𝑗𝑥𝑗𝜀
−1)𝑖 𝑒𝑥𝑝(−

1

𝜀
∑𝑥𝑗

2

𝑛

𝑗=1

) ,

𝑉𝑡
(𝑖)
(0, 𝑥1, . . . , 𝑥𝑛) = 𝜙𝑖(𝑥1, . . . , 𝑥𝑛), (𝑖 = 0,1),  ∀(𝑥1, . . . , 𝑥𝑛) ∈ 𝑅

𝑛,

 

(2)

 

 

{
 
 

 
 (𝑈(𝑎1,...,𝑎𝑛)

1,1,...,1 )|𝑡=𝑇 ≡ (𝑈𝜀𝑡 +∑

𝑛

𝑗=1

𝑎𝑗𝑈𝜀𝑥𝑗)|𝑡=𝑇 = 𝑔0(𝑥1, . . . , 𝑥𝑛) + 𝑔𝜀(𝑥1, . . . , 𝑥𝑛),

(𝑉𝑡 +∑

𝑛

𝑗=1

𝑎𝑗𝑉𝑥𝑗)𝑡=𝑇 = 𝑔0(𝑥1, . . . , 𝑥𝑛),  ∀(𝑥1, . . . , 𝑥𝑛) ∈ 𝑅
𝑛,

 

(3)

 

 

при этом вводится информация относительно исходных данных в виде: 
 

{
 
 
 
 
 

 
 
 
 
 
||𝑔𝜀||𝐿2(𝑅𝑛) = (∬ |𝑔𝜀(𝑥1, . . . , 𝑥𝑛)|

2𝑑𝑄
𝑅𝑛

)

1
2

≤ 𝛥1(𝜀), (𝑑𝑄 = 𝑑𝑥1. . . 𝑑𝑥𝑛),

||𝑔𝜀(𝑥1 − 𝑎1(𝑡 − 𝑠), . . . , 𝑥𝑛 − 𝑎𝑛(𝑡 − 𝑠))||𝐿2(0,𝑇) =

= (𝑠𝑢𝑝
𝛺̄0

∫ |
𝑡

0

𝑔𝜀(𝑥1 − 𝑎1(𝑡 − 𝑠), . . . , 𝑥𝑛 − 𝑎𝑛(𝑡 − 𝑠))|
2𝑑𝑠)

1
2

≤ 𝛥2(𝜀), (𝛥1, 𝛥2 ≤ 𝛥0(𝜀) →
𝜀→0

0),

||𝑈𝜀(0, 𝑥1, . . . , 𝑥𝑛) − 𝑉(0, 𝑥1, . . . , 𝑥𝑛)||𝐿2(𝑅𝑛) ≤ (2
−1𝜋)

1
2𝜀
1
2 = 𝛾0𝜀

1
2,

𝛦(𝑎1,...,𝑎𝑛)
1,1,...,1 =

𝜕

𝜕𝑡
+∑

𝑛

𝑗=1

𝑎𝑗
𝜕

𝜕𝑥𝑗
,

 

(4

) 

 

где (𝑈𝜀 , 𝑍𝜀) - неизвестные функции.  В указанных условиях требуется показать близости 

решений СВОЗ и ВОЗ в 𝑊ℎ
2(𝛺0) , здесь:0 < ℎ0(𝑥),  𝑓(𝑡), 𝜙𝑖(𝑥), 𝑔0(𝑥), 𝑔𝜀(𝑥),    0 < 𝑎𝑗 ,  𝜆 =

𝑐𝑜𝑛𝑠𝑡, (𝑗 = 1, 𝑛), (𝑥1, . . . , 𝑥𝑛) = 𝑥 ∈ 𝑅
𝑛, 0 < 𝛽 < 2−1- являются известными, причем 

 

{
 
 
 
 

 
 
 
 ℎ0 ≡∑

𝑛

𝑗=1

ℎ𝑗(𝑥𝑗) + ℎ(𝑥); 0 ≤ ℎ ≤ ℎ̃ = 𝑐𝑜𝑛𝑠𝑡,  0 ≤ ℎ0 ≤ ℎ̃0 = 𝑐𝑜𝑛𝑠𝑡, ∀𝑥 ∈ 𝑅
𝑛,

(∫ ℎ(𝑥1, . . . , 𝑥𝑛)𝑑𝑄
𝑅𝑛

)

1
2

≤ 𝛾1 = 𝑐𝑜𝑛𝑠𝑡; 𝑠𝑢𝑝
[0,𝑇]

|𝑓(𝑖)(𝑡)| ≤ 𝑓0 = 𝑐𝑜𝑛𝑠𝑡, (𝑖 = 0,1), 

𝑓(0) = 0,  𝑓(𝑇) ≠ 0;   𝑀0(𝑇, 𝜆, 𝜀
𝛽) = 𝑓(𝑇) − ∫ 𝑒𝑥𝑝 (−

𝜆

𝜀𝛽
(𝑇 − 𝑠))

𝑇

0

𝑓′(𝑠)𝑑𝑠 ≠ 0,

∀𝜀 ∈ (0,1), (𝜀 = 0);  0 < 𝜆−1 = 𝑐𝑜𝑛𝑠𝑡 << 1.

 

(5) 

 

Материал и методы исследования 

Интегрализация Вырожденный ОЗ 

Известно, что при 0 =  из СВОЗ (1) - (3) следует ВОЗ: 
 

𝐸(𝑎1,...,𝑎𝑛)
1,1,...,1 𝑉(𝑡, 𝑥1, . . . , 𝑥𝑛) +

1

𝜆
ℎ0(𝑥1, . . . , 𝑥𝑛)𝑉 =

1

𝜆
𝑍̃(𝑥1, . . . , 𝑥𝑛)𝑓(𝑡), 

(6) 

 

( )

1 1 1(0, ,..., ) ( ,..., ), ( 0,1), ( ,..., ) ,i n

t n i n nV x x x x i x x R= =    (7) 
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(𝐸(𝑎1,...,𝑎𝑛)
1,1,...,1 𝑉)|𝑡=𝑇 = 𝑔0(𝑥1, . . . , 𝑥𝑛), ∀(𝑥1, . . . , 𝑥𝑛) ∈ 𝑅

𝑛, (8) 
 

где вектор функция 𝛷 = (𝑉, 𝑍̃) является неизвестным. Здесь 𝑉(𝑡, 𝑥), (𝑥 ∈ 𝑅𝑛) 

представляет собой n-скоростную функцию распределения, а известная неотрицательная 

функция ℎ0(𝑥), 𝑥 ∈ 𝑅
𝑛 является частотой столкновений частиц с окружающей средой, причем 

электростатическое ускорение предполагается постоянным 0 < 𝑎 ∈ 𝑅𝑛 . При этом функция 

𝑍̃(𝑥)𝑓(𝑡) ≡ 𝐹̃(𝑡, 𝑥), (𝑥 ∈ 𝑅𝑛)  описывает внутренние источники, где содержится 

коэффициентная неизвестная функция 𝑍̃(𝑥), (𝑥 ∈ 𝑅𝑛) . Поэтому исходная задача (1)-(3) 

является СВ моделью задачи (6)-(8). Аналагично обсуждая, в условиях (5), (7), (8) из уравнения 

(6) следует система: 
 

{
𝐸(𝑎1,...,𝑎𝑛)
1,1,...,1 𝑉 +

1

𝜆
ℎ0(𝑥1, . . . , 𝑥𝑛)𝑉 = (𝑓(𝑇))−1𝑓(𝑡) [𝑔0(𝑥1, . . . , 𝑥𝑛) +

1

𝜆
ℎ0𝑉] ≡ 𝐵0𝑉,

𝑍̃(𝑥1, . . . , 𝑥𝑛) = (𝑓(𝑇))−1[𝜆𝑔0(𝑥1, . . . , 𝑥𝑛) + ℎ0𝑉(𝑡, 𝑥1, . . . , 𝑥𝑛)].

 

(9) 

 

Следовательно, на основе 
 

𝑉 = 𝑄(𝑡, 𝑥1, . . . , 𝑥𝑛) 𝑒𝑥𝑝 [−(∑

𝑛

𝑗=1

1

𝜆𝑎𝑗
∫ ℎ𝑗(𝜏𝑗)𝑑𝜏𝑗

𝑥𝑗

−∞

)], 

(10) 

 

с условием 
 

𝑄|𝑡=0 = 𝜙0(𝑥1, . . . , 𝑥𝑛) 𝑒𝑥𝑝 [∑

𝑛

𝑗=1

1

𝜆𝑎𝑗
∫ ℎ𝑗(𝜏𝑗)𝑑𝜏𝑗

𝑥𝑗

−∞

]

≡ 𝜓0(𝑥1, . . . , 𝑥𝑛), ∀(𝑥1, . . . , 𝑥𝑛) ∈ 𝑅
𝑛, 

(11) 

 

из (6) имеем уравнение вида: 
 

𝐸(𝑎1,...,𝑎𝑛)
1,1,...,1 𝑄 = {−

1

𝜆
ℎ(𝑥1, . . . , 𝑥𝑛)𝑉 + (𝐵0𝑉)(𝑡, 𝑥1, . . . , 𝑥𝑛)} 𝑒𝑥𝑝(∑

𝑛

𝑗=1

1

𝜆𝑎𝑗
∫ ℎ𝑗(𝜏𝑗)𝑑𝜏𝑗

𝑥𝑗

−∞

), 

(12) 

 

где (11), (12) - задача Коши относительно функции ( , ), .nQ t x x R  Тогда из (2) следует: 
 

𝑄 = 𝜓0(𝑥1 − 𝑎1𝑡, . . . , 𝑥𝑛 − 𝑎𝑛𝑡) + ∫ (𝑒𝑥𝑝(∑

𝑛

𝑗=1

1

𝜆𝑎𝑗
∫ ℎ𝑗(𝜏𝑗)𝑑𝜏𝑗

𝑥𝑗−𝑎𝑗𝑡

−∞

))
𝑡

0

× 

× {−𝜆−1ℎ(𝑥1 − 𝑎1(𝑡 − 𝑠), . . . , 𝑥𝑛 − 𝑎𝑛(𝑡 − 𝑠))𝑉(𝑠, 𝑥1 − 𝑎1(𝑡 − 𝑠), . . . , 𝑥𝑛 − 𝑎𝑛(𝑡
− 𝑠)) + 

+(𝐵0𝑉)(𝑠, 𝑥1 − 𝑎1(𝑡 − 𝑠), . . . , 𝑥𝑛 − 𝑎𝑛(𝑡 − 𝑠))}𝑑𝑠. 

(13) 

 

Поэтому, подставляя (13) в (10), имеем 
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𝑉 = 𝜙0(𝑥1 − 𝑎1𝑡, . . . , 𝑥𝑛 − 𝑎𝑛𝑡) 𝑒𝑥𝑝 [−(∑

𝑛

𝑗=1

1

𝜆𝑎𝑗
∫ ℎ𝑗(𝜏𝑗)𝑑𝜏𝑗

𝑥𝑗

𝑥𝑗−𝑎𝑗𝑡

)] + 

+∫
𝑡

0

𝑒𝑥𝑝 [−(∑

𝑛

𝑗=1

1

𝜆𝑎𝑗
∫ ℎ𝑗(𝜏𝑗)𝑑𝜏𝑗

𝑥𝑗

𝑥𝑗−𝑎𝑗(𝑡−𝑠)

)] { − 𝜆−1ℎ(𝑥1 − 𝑎1(𝑡 − 𝑠), . . . , 𝑥𝑛

− 𝑎𝑛(𝑡 − 𝑠))𝑉(𝑠, 𝑥1 − 
−𝑎1(𝑡 − 𝑠), . . . , 𝑥𝑛 − 𝑎𝑛(𝑡 − 𝑠)) + (𝐵0𝑉)(𝑠, 𝑥1 − 𝑎1(𝑡 − 𝑠), . . . , 𝑥𝑛 − 𝑎𝑛(𝑡 − 𝑠))}𝑑𝑠

≡ 𝐵𝑉, 

(14) 

 

где (14) является нагруженным ИУ-2 относительно функции 𝑉(𝑡, 𝑥), 𝑥 ∈ 𝑅𝑛. Так как 0 <

𝜆−1 = 𝑐𝑜𝑛𝑠𝑡 << 1,  то оператор B  допускает условия принципа Банаха [7], т.е. ИУ (14) 

однозначно разрешимо  в 𝐶(𝛺̄0) . А это означает, что функция 𝑉 ∈ 𝐶1,1,...,1(𝛺̄0)  является 

известной. Тогда, с учетом (9), и функция 𝑍̃(𝑥), 𝑥 ∈ 𝑅𝑛  считается известной. При этом 

предположим, что функции:(𝑉𝑡)𝑡, (𝑉𝑥𝑗)𝑡 ∈ 𝐿
2(0, 𝑇), (𝑗 = 1, 𝑛) для всех фиксированных 𝑥 ∈ 𝑅𝑛,  

 

2 2 2

2

1

2
2

00

0

1

2
2

0 0 00 0

0

|| || | ( , ) | , ,

|| || | ( , ) | , , ( max( , ), 1, ).
j j

T

n

t L t

T

n

tx tx j jL

V V t x dt C x R

V V t x dt C x R C C C j n


  =    

  

  
 =    = = 
  





 

(15) 

 

Лемма 1. При условиях (5), (7), (8) вырожденное УП (6), с учетом (9) однозначно 

разрешимо в 𝐶1,1,...,1(𝛺̄0), причем допускается условие (15) для функций 𝑉𝑡2 ,  𝑉𝑡𝑥𝑗 , (𝑗 = 1, 𝑛). 

 

Результаты и обсуждение 

Однозначная разрешимость СВОЗ и близость решений СВОЗ и ВОЗ 

Сперва, чтобы  выяснить однозначной разрешимости  изучаемой СВОЗ переноса, 

применим представление АХ, т.е.: 
 

2

1

1

1 1

( )
( , ,..., ) exp ,

( ,..., ) ( ,..., ).

n
j j

n

j

n n

x a t
U t x x V

Z x x Z x x

 

 






=

  −
= + + −   

  


= +





 

(16) 

 

Тогда из (1),  с учетом (6), (16)  вытекает: 
 

( )
1 1 2 3

2

2
2

1,1,...,1 1,1,1

( ,..., ) ( , , )

1

2

0 1

1 1

( )
exp

( )
( , , ) exp ( ,..., ) ( ) ,

n

j

n
j j

a a a a a

j

n n
j j

n j txt
j j

x a t
E V E

t

x a t
h x y z x x f t V a V



  



 

    


  


=

= =

   − 
+ + + − + +          

  −  
+ + − = − +      

   



 

 

(17) 

 

где ( ),V Z - решение ВОЗ (6) - (8), ( ),   — остаточные функции, которые содержатся в 

уравнении (17) с условиями: 
 

𝜉𝑡
(𝑖)
(𝑡, 𝑥1, . . . , 𝑥𝑛)|𝑡=0 = 0, (𝑖 = 0,1), (18) 
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(𝐸(𝑎1,...,𝑎𝑛)
1,1,...,1 𝜉𝜀)|𝑡=𝑇 = 𝑔𝜀(𝑥1, . . . , 𝑥𝑛),  ∀(𝑥1, . . . , 𝑥𝑛) ∈ 𝑅

𝑛. (19) 
 

Фактически остаточные функции (𝜉𝜀 , 𝜂𝜀) определяются из ОЗ (17) - (19), где (19) 

является дополнительной информацией для этой задачи. Поэтому, чтобы выяснить 

однозначной разрешимости  этой задачи, сначала, (17) преобразуем к виду: 
 


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1
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( ,..., ) 0

0

2

2

1 0
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1
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1
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n

t

a a
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j j

j

t

E t s h x s x x f s s x
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V s x s x ds Y t x H t x

t s f s ds x Y


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 
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
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 

  



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 

=

 
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 

  −
 + − + +  +    

  

 
+ − −  + 

 





 1 0( , , ),[( , ) , ],nt x t x x R  

 

(20) 

 

где функция 𝑌1(𝑡, 𝑥1, . . . , 𝑥𝑛, 𝜀) определяется по формуле: 
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
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






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 
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=
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 
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 

  − 
− + −     

   

  
 + + + = →   

  





 .












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(21) 

 

Из уравнения (20), на основе (19) следует уравнение: 
 

( )( ) 1

1 0 1 1 1 0 1( ,..., ) ( , , ) ( ,..., ) ( , ,..., , ) , ,..., .n n n nx x M T g x x Y T x x H T x x

      −= − +  (22) 

 

Следовательно, подставляя (22) в (20) получим: 
 

𝐸(𝑎1,...,𝑎𝑛)
1,1,...,1 𝜉𝜀 = 𝑌2(𝑡, 𝑥1, . . . , 𝑥𝑛, 𝜀) − (𝐻0𝜉𝜀)(𝑡, 𝑥1, . . . , 𝑥𝑛)

+
1

𝜀𝛽
∫ 𝑒𝑥𝑝 (−

𝜆

𝜀𝛽
(𝑡 − 𝑠)) 𝑓(𝑠)𝑑𝑠

𝑡

0

×𝑀0
−1(𝐻0𝜉𝜀)(𝑇, 𝑥1, . . . , 𝑥𝑛), 

(23) 

 

где  
 

𝑌2 ≡ 𝑌1 +
1

𝜀𝛽
∫ 𝑒𝑥𝑝 (−

𝜆

𝜀𝛽
(𝑡 − 𝑠))

𝑡

0

𝑓(𝑠)𝑑𝑠

×𝑀0
−1{𝑔𝜀(𝑥1, . . . , 𝑥𝑛) − 𝑌1(𝑇, 𝑥1, . . . , 𝑥𝑛, 𝜀)}. 

(24) 

 

Поэтому, с учетом (18) из (23) имеем: 

 

𝜉𝜀(𝑡, 𝑥1, . . . , 𝑥𝑛) = ∫ {−(𝐻0𝜉𝜀)(𝑠, 𝑥1 − 𝑎1(𝑡 − 𝑠), . . . , 𝑥𝑛 − 𝑎𝑛(𝑡 − 𝑠)) +
𝑡

0

 

+
1

𝜀𝛽
∫ 𝑒𝑥𝑝 (−

𝜆

𝜀𝛽

𝑠

0

(𝑠 − 𝑠′)𝑓(𝑠′)𝑑𝑠′×𝑀0
−1(𝐻0𝜉𝜀)(𝑇, 𝑥1 − 𝑎1(𝑡 − 𝑠), . . . , 𝑥𝑛 − 𝑎𝑛(𝑡

− 𝑠))}𝑑𝑠 + 
+𝑌(𝑡, 𝑥1, . . . , 𝑥𝑛, 𝜀) ≡ (𝑃𝜉𝜀)(𝑡, 𝑥1, . . . , 𝑥𝑛), 

(25) 



Бюллетень науки и практики / Bulletin of Science and Practice 

https://www.bulletennauki.ru 

Т. 12. №2 2026 

https://doi.org/10.33619/2414-2948/123 

 

 Тип лицензии CC: Attribution 4.0 International (CC BY 4.0) 30 

здесь  
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










= + =

 

(26) 

 

Лемма 2. В условиях леммы 1 и системы 
 

{
𝐿𝑃 < 1,

𝑃: 𝑆𝑟0 → 𝑆𝑟0 ,   (𝑆𝑟0 = {𝜉𝜀: |𝜉𝜀| ≤ 𝑟0 = 𝑐𝑜𝑛𝑠𝑡, ∀(𝑡, 𝑥1, . . . , 𝑥𝑛) ∈ 𝛺̄0}),
 

(27) 

 

уравнение (25) однозначно разрешимо  в𝐶(𝛺̄0), причем  
 

||𝜉𝜀||𝐶 ≤ (1 − 𝐿𝑝)
−1
𝛿2(𝜀). 

(28) 

 

Следовательно, на основе (22) имеет место: 
 

{
 
 

 
 ||𝜂𝜀(𝑥1, . . . , 𝑥𝑛)||𝐿ℎ

2(𝑅𝑛) ≤ |𝑀0
−1|(ℎ̃)

1
2𝛥0(𝜀) + |𝑀0

−1|𝛿0(𝜀)𝛾1 + 𝛾1|𝑀0
−1|𝛾4(1 − 𝐿𝑝)

−1 ×

× 𝛿2(𝜀) = 𝛿3(𝜀),  [
1

𝜆
(ℎ̃0 + 2(𝑇0 + 1) + (1 − 𝐿𝑝)

−1𝛿2(𝜀)) ≤ 𝛾4],

||𝑍𝜀 − 𝑍̃||𝐿ℎ
2(𝑅𝑛) = ||𝜂𝜀||𝐿ℎ

2(𝑅𝑛).

 

 

(29) 

 

В самом деле, результаты леммы 2 очевидны, так как при выполнении (27) для оператора 

P  реализуются условия Банаха, а это означает, что  уравнение (25) однозначно разрешимо в 

𝐶(𝛺̄0). Тогда, с учетом (22) имеем оценку вида (29). ЧиТД. 

Далее, когда для исследования исходной многоскоростной СВОЗ применяется 

представления АХ (16), то относительно всех слагаемых функций (16) выполняются выводы 

лемм 1;2.  Тогда, на основе (16) следует оценка вида: 
 

|𝑈𝜀 − 𝑉| ≤ ||𝜉𝜀||𝐶 + 𝑒𝑥𝑝(−∑

𝑛

𝑗=1

(𝑥𝑗 − 𝑎𝑗𝑡)
2

𝜀
). 

(30) 

 

Поэтому, учитывая условия лемм 1;2 и оценивая (30) в смысле нормы
0( )p

hL  , получим: 
 

||𝑈𝜀 − 𝑉||𝐿ℎ
2 ≤ (1 − 𝐿𝑝)

−1𝛿2(𝜀)𝛾1√𝑇 + 𝛾0√𝜀ℎ̃𝑇 = 𝛿4(𝜀) →
𝜀→0

0. (31) 

 

В итоге, рассматривая совокупности результатов (29) и (31), и вместе с тем учитывая

( ); ,U V Z Z  = − −   имеем оценку: 

 

{
𝑊ℎ

2(𝛺0) = {(𝑡, 𝑥1, . . . , 𝑥𝑛) ∈ 𝛺0: 𝜓1(𝑡, 𝑥1, . . . , 𝑥𝑛) ∈ 𝐿ℎ
2(𝛺0), 𝜓2(𝑥1, . . . , 𝑥𝑛) ∈ 𝐿ℎ

2(𝑅𝑛)},

||𝜓||𝑊ℎ
2(𝛺0)

= ||𝑈𝜀 − 𝑉||𝐿ℎ
2(𝛺0)

+ ||𝑍 − 𝑍̃||𝐿ℎ
2(𝑅𝑛) ≤ 𝛿𝜀(𝜀) + 𝛿4(𝜀) = 𝛥(𝜀) →𝜀→0

0.
 

(32) 
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Теорема 1. В условиях лемм 1, 2 и (32) СВОЗ (1) - (4) имеет единственное решение по 

правилу (16), причем допустимая погрешность между решениями СВОЗ и ВОЗ в𝑊ℎ
2(𝛺0) будет 

порядка 𝛥(𝜀). 

 

Заключение 

В изученной СВОЗ типа Каца в неограниченной области результаты получены в весовом 

пространстве 2

0( )hW  , когда априорные информации о входных данных задаются в 
2 ( )nL R . 

При этом решение построено на основе модификации разработанного  метода АХ [7], где 

оценка близости решений СВОЗ  и ВОЗ доказываются в 2

0( )hW  . Полученные выводы, могут 

в будущем позволить решать многоскоростные СВОЗ переноса, когда электростатические 

ускорения являются неотрицательными функциями. 
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