
Бюллетень науки и практики / Bulletin of Science and Practice

https://www.bulletennauki.ru

Т. 10. №12 2024

https://doi.org/10.33619/2414-2948/109

 Тип лицензии CC: Attribution 4.0 International (CC BY 4.0) 161

UDC 004.4 https://doi.org/10.33619/2414-2948/109/22

MEMORY LEAKS IN SPA:

PREVENTION, DETECTION, AND REMEDIATION METHODS

© Dudak A., ORCID: 0009-0002-8466-8587, Tomsk State University of Control Systems and

Radioelectronics, Tomsk, Russia, aleksei.dudak@rambler.ru

УТЕЧКИ ПАМЯТИ В SPA:

МЕТОДЫ ПРОФИЛАКТИКИ, ОБНАРУЖЕНИЯ И БОРЬБЫ С НИМИ

©Дудак А.А., ORCID: 0009-0002-8466-8587, Томский государственный университет систем

управления и радиоэлектроники, г. Томск, Россия, aleksei.dudak@rambler.ru

Abstract. This article addresses the issue of memory leaks in modern single-page applications

(SPAs). By investigating the causes of leaks associated with dynamic content updates, active

interaction with the document object model (DOM) interface, and asynchronous operations,

developers gain insights into avoiding the excessive accumulation of unused objects in memory.

The article discusses methods for preventing and addressing leaks, including the use of weak

references, component state management, and optimizing asynchronous requests. It also emphasizes

the importance of using monitoring tools, such as Chrome DevTools, and integrating automated

testing into the continuous integration (CI) and continuous delivery (CD) process. The article offers

a comprehensive approach for efficient memory management and preventing performance issues in

SPA applications.

Аннотация. В данной статье рассматривается проблема утечек памяти в современных

одностраничных приложениях (SPA). Исследование причин утечек, связанных с

динамическим обновлением контента, активным взаимодействием с программным

интерфейсом DOM и асинхронными операциями помогает разработчикам понять, как

избежать излишнего скопления неиспользуемых объектов в памяти. Рассматриваются методы

профилактики и устранения утечек, включая использование слабых ссылок, управление

состоянием компонентов, а также оптимизация работы с асинхронными запросами. Также

акцентируется внимание на использовании инструментов мониторинга, таких как Chrome

DevTools, и интеграции автоматизированного тестирования в процесс CI/CD. Статья

предлагает комплексный подход для эффективного управления памятью и предотвращения

проблем с производительностью в SPA-приложениях.

Keywords: memory leaks, single page applications (SPA), document object model (DOM),

asynchronous operations, monitoring, optimization.

Ключевые слова: утечки памяти, одностраничные приложения (SPA), document object

model (DOM), асинхронные операции, мониторинг, оптимизация.

Memory leaks are one of the common and complex issues faced by developers of modern

single-page applications (SPAs). The key feature of such applications is that they dynamically

update content without requiring page reloads, which leads to the retention of large amounts of data

in the system’s memory. This approach enhances user experience, but if memory management is not

handled correctly, unused objects may accumulate in the application, resulting in memory leaks.

Бюллетень науки и практики / Bulletin of Science and Practice

https://www.bulletennauki.ru

Т. 10. №12 2024

https://doi.org/10.33619/2414-2948/109

 Тип лицензии CC: Attribution 4.0 International (CC BY 4.0) 162

The problem is further exacerbated by the complexity of state management in SPAs, where data can

change throughout the application's lifecycle and interact frequently with various external data

sources such as application programming interfaces (APIs) and databases.

Additionally, the nature of asynchronous requests and event handlers often leads to situations

where references to objects are not deleted in time, leaving them in memory even though they are

no longer needed. The prolonged accumulation of such objects can significantly degrade application

performance and even cause crashes once the memory limit is reached. With the growing

complexity of web applications and their increased interaction with users, memory leak issues are

becoming increasingly critical. The aim of this study is to explore the factors contributing to

memory leaks in SPAs and propose methods for their prevention and remediation. To achieve this,

the causes of memory leaks, tools for their detection, and modern approaches to their prevention are

examined.

Main part. Main characteristics and causes of memory leaks in SPA

Memory leaks in SPAs occur for several reasons related to the peculiarities of their

architecture and handling dynamic data. Unlike traditional multi-page applications (MPAs), SPAs

dynamically update content within a single page, which requires constant use of RAM to store data

and UI elements. This characteristic, along with intensive interactions with the document object

model (DOM) and asynchronous operations, increases the likelihood of memory leaks.

A memory leak, regardless of the architecture type, represents a serious challenge to the

security and functionality of web applications. It can be exploited to disclose sensitive information,

inject malicious code into the program's memory, and even be used in DoS (Denial of Service)

attacks [1]. This is particularly concerning for DoS attacks, which, according to statistics, are

increasing in scale (Figure). In the context of SPAs, memory leaks can be classified by their source

types. One of the most common types is DOM element leaks, which occur when interface elements

are dynamically created but not properly removed. For example, if the application adds nodes to the

DOM based on user actions but fails to remove them when the state changes, those nodes continue

to occupy memory even though they are no longer necessary [2].

Another type of leak involves closures. Closures, which are functions that have access to

variables from an outer context, can hold references to objects even if they are no longer in use. In

SPA, where asynchronous functions and event handlers are frequently used, poor management of

closures can lead to the accumulation of references to outdated objects. Leaks caused by incomplete

network requests and timers are also common. For instance, if an application creates multiple

asynchronous requests or timers but does not stop them when the state changes, the resources

associated with these operations remain in memory. This is especially significant in SPA, as such

applications extensively use AJAX requests to exchange data with servers [3].

One of the primary causes of memory leaks in SPAs is their architectural approach, in which

the interface is loaded once, and subsequent content changes happen without full page reloads. This

approach ensures high interactivity but requires the constant retention of component states in

memory. During operation, especially with frequent interface updates and significant state changes,

memory may be unnecessarily occupied by unused elements and objects. The SPA approach heavily

interacts with the DOM, and each DOM element occupies a significant amount of memory. In

situations where interface elements are dynamically added or modified but not removed, even if

they are no longer needed, this leads to the accumulation of unused DOM nodes that remain in

memory. This issue worsens when DOM elements contain nested objects, such as images or

multimedia files, as they occupy more memory and require additional resources. Moreover, SPA

widely uses asynchronous operations and event handlers, increasing the likelihood of

“dead”references”—situations where objects remain in memory despite no actual use. For example,

Бюллетень науки и практики / Bulletin of Science and Practice

https://www.bulletennauki.ru

Т. 10. №12 2024

https://doi.org/10.33619/2414-2948/109

 Тип лицензии CC: Attribution 4.0 International (CC BY 4.0) 163

events attached to objects that have been removed from the DOM continue to exist if they were not

explicitly removed. This results in associated objects continuing to occupy memory, causing

unwanted leaks. Finally, it is important to note that memory leaks can also arise from unoptimized

code and a lack of a well-thought-out state management architecture (Table).

Figure. Volumetric DDoS Attacks 1H 2023 vs. 1H 2024 (https://lyl.su/o9Si)

Table

EXAMPLES OF COMMON MEMORY LEAKS IN SPA FRAMEWORKS

 (https://lyl.su/Bcmg; https://lyl.su/U5hQ) [4]

Framework Typical leak Cause Remediation method

React Dom element leak Incorrect state handling Use useeffect for cleanup

Angular Leak from asynchronous operations Unfinished http requests Use ngondestroy

Vue Event leaks Unremoved event

handlers

Use beforedestroy to remove

events

In the context of SPAs, state management is often handled using libraries such as React,

Angular, and Vue, which store application state in memory. Without proper memory management,

this can lead to the accumulation of outdated states, which continue to consume system resources.

Additionally, unoptimized code, featuring bulky closures and unnecessary references to objects, can

further exacerbate this issue.

Methods for resolving detected memory leaks

Eliminating memory leaks in SPAs requires systematic, technically sound methods. The

resolution phase involves not only identifying and freeing up memory but also implementing

measures to prevent their recurrence. It's essential to address DOM leaks, optimize closures, and

handle asynchronous requests and event handlers appropriately.

Leaks DOM element occurs when nodes are dynamically created but not removed after they

are no longer needed. To resolve this, developers should maintain strict control over the creation

and deletion of DOM nodes. A common method is to manually remove unused nodes, freeing up

Бюллетень науки и практики / Bulletin of Science and Practice

https://www.bulletennauki.ru

Т. 10. №12 2024

https://doi.org/10.33619/2414-2948/109

 Тип лицензии CC: Attribution 4.0 International (CC BY 4.0) 164

memory occupied by outdated UI elements. This can be achieved by using functions that both

remove elements from the DOM and clear any references to them in the code.

Automatic DOM management can also be a helpful solution for SPAs, especially when

working with a large number of dynamic objects. Modern frameworks like React and Vue support

virtual DOM, allowing for automatic cleanup of removed or modified elements. However,

developers must remember that even with a virtual DOM, memory leaks can occur if references are

not managed properly. Therefore, it is important to use built-in cleanup methods and element

removal techniques. For example, React's useEffect hook allows developers to configure automatic

resource cleanup after they are no longer in use [5].

Closures, being an essential part of functional programming, often lead to memory leaks when

captured variables remain in memory even when their values are no longer needed. To prevent and

resolve closure-related leaks, it is recommended to remove references to closures when they are no

longer required. An important method is the use of weak references, which allow developers to

create references to objects without keeping them in memory, thus enabling the garbage collector to

reclaim unused memory more effectively. In some cases, regular functions containing closures can

be replaced by lighter callback functions, allowing memory to be freed immediately after the

operation completes. For example, in asynchronous operations where closures use temporary

variables, it’s crucial to ensure that function calls are correctly concluded after execution.

Another common source of memory leaks is event handlers that remain attached to objects

even after those objects are removed from the DOM. This problem arises when event handlers are

not detached when the component’s state changes or when an element is removed. To prevent and

fix this, it is necessary to explicitly remove attached event handlers using the removeEventListener

method in JavaScript. An example of such an approach is using React hooks, which provide

automatic tracking of a component’s state. The useEffect hook can accept a cleanup function that

removes all attached events on each component update, thereby preventing the accumulation of

unused references. Other frameworks offer similar capabilities, utilizing built-in methods that track

component state changes and perform automatic cleanup of handlers.

Memory leak monitoring and automation testing in SPA

One of the key steps in preventing memory leaks in SPA applications is continuous

performance monitoring and automated testing. These approaches not only help identify memory

leaks early in the development process but also ensure effective performance management in real

time. It is essential for developers to use both analysis tools and approaches integrated into CI/CD

(Continuous Integration and Delivery) systems to thoroughly check and automatically resolve

memory leaks [6].

Modern browsers provide various tools for performance monitoring and detecting memory

leaks. Chrome DevTools is one of the most powerful solutions for analyzing memory usage in web

applications. With tools such as Heap Snapshots, Timeline Profiling, and Allocation Tracking,

developers can track which objects remain in memory after the application finishes and identify

objects that were not deleted in a timely manner. These tools help developers and testers pinpoint

where memory leaks occur and which objects are causing them.

An example of using such tools is executing heap snapshots in Chrome DevTools, which

provide detailed reports on which objects are consuming memory, how much memory has been

allocated for each object, and how much memory was not freed after the operation finished. This

data can be used to identify issues related to dynamically creating and deleting elements in the

DOM, as well as analyzing the handling of asynchronous operations.

Memory leak monitoring and performance testing should be integrated into the CI/CD process

to detect issues early in development. This reduces the likelihood of memory leaks being discovered

Бюллетень науки и практики / Bulletin of Science and Practice

https://www.bulletennauki.ru

Т. 10. №12 2024

https://doi.org/10.33619/2414-2948/109

 Тип лицензии CC: Attribution 4.0 International (CC BY 4.0) 165

only during the application's production stage. Automation of testing, using tools like Jest, Mocha,

and Cypress, can include creating tests that monitor memory usage and alert to deviations during

test execution. In addition to these tools, performance testing libraries such as jest-memory-leak can

run automatic memory leak checks during the testing process. These tests can be configured to

monitor memory allocation with each code update, helping prevent situations where a memory leak

goes unnoticed until the application is deployed.

State management libraries and tools

State management libraries like Redux, Vuex, and MobX are widely used in SPAs for

centralized data storage. However, if state is not managed properly, data can accumulate in memory,

causing leaks. It is important to integrate tools like Redux DevTools or Vue DevTools to track state

changes and identify potential leaks.

Redux DevTools, for instance, allows developers to monitor all state changes in the

application and shows which objects have been stored in memory. Vue DevTools similarly lets

developers observe component states and dynamically changing data. These tools help identify

leaks related to unnecessary references to data and allow developers to fix application behavior

before deployment. One way to minimize memory leaks caused by asynchronous operations is by

using «cancellation callbacks». These functions enable the cancellation or completion of operations

related to network requests or timers once a component has been destroyed. This is crucial for

preventing the accumulation of asynchronous operations that remain active even after the state

changes. Integrating such methods into automated tests provides further assurance that the

application will not have unused asynchronous processes lingering in memory, thus improving

performance and reducing the likelihood of leaks in the production version.

Conclusion

Memory leaks in SPA applications present a significant and frequent issue that requires

careful attention to design, development, and testing. SPA architectural features, such as dynamic

content updates and the heavy use of asynchronous operations, increase the likelihood of memory

leaks. However, with the right memory management methods, monitoring, and automated testing,

these issues can be effectively prevented.

Key preventive measures include using modern monitoring tools like Chrome DevTools and

integrating memory testing into the CI/CD process, which helps identify leaks early in

development. Additionally, it is crucial to manage component states correctly, use weak references,

and terminate asynchronous operations when they are no longer needed.

Substantial attention should be paid to training the development team and employing code

review practices to minimize the chance of memory leaks. Continuous monitoring and the use of

memory testing tools should become an integral part of the workflow, ensuring the long-term

stability and performance of SPA applications.

References:

1. Israfilov Anar (2024). Geopolitical aspects of cybersecurity: international cooperation and

conflicts. Kholodnaya nauka, (8), 56-63.

2. Shahoor, A., Khamit, A. Y., Yi, J., & Kim, D. (2023). LeakPair: Proactive repairing of

memory leaks in single page web applications. In 2023 38th IEEE/ACM International Conference

on Automated Software Engineering (ASE) (pp. 1175-1187). IEEE.

https://doi.org/10.1109/ASE56229.2023.00097

3. Yu, B., Tian, C., Zhang, N., Duan, Z., & Du, H. (2021). A dynamic approach to detecting,

eliminating and fixing memory leaks. Journal of Combinatorial Optimization, 42, 409-426.

https://doi.org/10.1007/s10878-019-00398-x

Бюллетень науки и практики / Bulletin of Science and Practice

https://www.bulletennauki.ru

Т. 10. №12 2024

https://doi.org/10.33619/2414-2948/109

 Тип лицензии CC: Attribution 4.0 International (CC BY 4.0) 166

4. Utture, A., & Palsberg, J. (2023, November). From Leaks to Fixes: Automated Repairs for

Resource Leak Warnings. In Proceedings of the 31st ACM Joint European Software Engineering

Conference and Symposium on the Foundations of Software Engineering (pp. 159-171).

https://doi.org/10.1145/3611643.3616267

5. Ponomarev, E. V. (2024). Razrabotka kreditnykh prilozhenii na Android: osobennosti i

vyzovy. Vestnik nauki, 2(9 (78)), 319-327. (in Russian).

6. Cák, F., & Dakić, P. (2024, September). Configuration Tool for CI/CD Pipelines and React

Web Apps. In 2024 14th International Conference on Advanced Computer Information

Technologies (ACIT) (pp. 586-591). IEEE. https://doi.org/10.1109/ACIT62333.2024.10712482

Список литературы:

1. Israfilov A. Geopolitical aspects of cybersecurity: international cooperation and conflicts //

Холодная наука. 2024. №8. P. 56-63.

2. Shahoor A., Khamit A. Y., Yi J., Kim D. LeakPair: Proactive repairing of memory leaks in

single page web applications // 2023 38th IEEE/ACM International Conference on Automated

Software Engineering (ASE). IEEE, 2023. P. 1175-1187.

https://doi.org/10.1109/ASE56229.2023.00097

3. Yu B., Tian C., Zhang N., Duan Z., Du H. A dynamic approach to detecting, eliminating

and fixing memory leaks // Journal of Combinatorial Optimization. 2021. V. 42. P. 409-426.

https://doi.org/10.1007/s10878-019-00398-x

4. Utture A., Palsberg J. From Leaks to Fixes: Automated Repairs for Resource Leak

Warnings // Proceedings of the 31st ACM Joint European Software Engineering Conference and

Symposium on the Foundations of Software Engineering. 2023. P. 159-171.

https://doi.org/10.1145/3611643.3616267

5. Пономарёв Е. В. Разработка кредитных приложений на Android: особенности и

вызовы // Вестник науки. 2024. Т. 2. №9 (78). С. 319-327.

6. Cák F., Dakić P. Configuration Tool for CI/CD Pipelines and React Web Apps // 2024 14th

International Conference on Advanced Computer Information Technologies (ACIT). IEEE, 2024. P.

586-591. https://doi.org/10.1109/ACIT62333.2024.10712482

Работа поступила

в редакцию 06.11.2024 г.

 Принята к публикации

12.11.2024 г.

__

Ссылка для цитирования:

Dudak A. Memory Leaks in Spa: Prevention, Detection, and Remediation Methods //

Бюллетень науки и практики. 2024. Т. 10. №12. С. 161-166. https://doi.org/10.33619/2414-

2948/109/22

Cite as (APA):

Dudak, A. (2024). Memory Leaks in Spa: Prevention, Detection, and Remediation Methods.

Bulletin of Science and Practice, 10(12), 161-166. https://doi.org/10.33619/2414-2948/109/22

